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ABSTRACT

Mobile devices are already woven into our everyday life and we became accustomed that mobile apps assist us in a
multitude of daily activities and with the rise of the Internet of Things new opportunities to further automatize tedious
tasks open up. New functional and user experience requirements demand for further resources and new ways to acquire
these, because mobile devices remain comparatively limited in terms of, e.g., computation, storage, and battery life. To face
these challenges, current approaches augment mobile applications either with cloud resources (Mobile Cloud Computing,
MCC) or with resources near the mobile device at the logical edge of the network (Mobile Edge Computing, MEC)
onto which tasks can be offloaded during runtime. But this does not automatically solve the conflict between resource
demands and a good user experience, as current solutions prove. It is the dynamically changing context that makes
for good or bad offloading strategies. In this paper, we corroborate this finding by first evaluating 40 existing solutions
based on a requirements catalogue derived from several application scenarios as well as the ISO/IEC criteria for software
quality. Afterwards, we present CloudAware, a mobile MCC/MEC middleware that supports automated context-aware self-
adaptation techniques that ease the development of elastic, scalable and context-adaptive mobile applications. Moreover,
we present a qualitative evaluation of our concepts and quantitatively evaluate different offloading scenarios using real
usage data to prove that mobile applications indeed benefit from context-aware self-adaptation techniques. And finally, we
conclude with a discussion of open challenges. Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mobile devices like smartphones, tablets and wearables are
continuously replacing stationary devices. Along with this
trend the porting of resource-hungry desktop applications
and mobile-first applications like augmented reality games
has led to a constant demand for higher performance and
capabilities. However, in addition to limited interaction
capabilities, mobile devices lack computational power,
storage capacity, energy and they suffer from a network
interface with low bandwidth, high latency and intermittent
connectivity. And this not only holds for smartphones, but
in the near future for a multitude of other (smart) mobile
devices that we will encounter in our everyday life with the
rise of the Internet of Things. To overcome these obstacles
and to allow even more sophisticated applications being
used by mobile users, external resources have to be woven
into the local execution of mobile applications [1].

But still, the limited bandwidth and the high latency
can have a significant impact on the usability and the user
experience. Hence, to ensure an acceptable performance
when augmenting mobile devices with external resources,

it is not always reasonable to rely on centralized cloud
resources as the single backend. Fog computing [2], a
term coined by Cisco Systems and also known as (mobile)
edge computing [3], mist computing [4] or under the
concept of cloudlets [5], rely on the assumption that
it is impractical or even impossible to always send all
data across the whole Internet from the mobile devices
to the cloud service provider. Accordingly, mobile edge
computing aims at providing resources like computational
power and storage at the logical edge of the network and
through a more geographically distributed platform rather
than at centralized spots, as it happens nowadays through
e.g. Amazon AWS and Microsoft Azure cloud datacenters.

However, such and similar concepts are posing
even bigger challenges also to the mobile applications’
capability to dynamically adapt to the constantly changing
execution environment. Just to name a few: Information
about the current bandwidth to specific resources and a
forecast about their future availability, the current battery
level or the probability that an offloaded task will be
successfully executed are all part of the applications’ and
devices’ so-called context that needs to be integrated into
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the distribution strategy. The mentioned concept has led to
an increasing demand for software that is able to exploit
the potentials of spontaneous interaction and therefore
needs to be able to dynamically adapt to the quickly and
constantly changing context of mobile ad-hoc scenarios.

But up to now, existing solutions are proprietary or
not well standardized as well as highly domain-specific
and therefore it is hardly possible to easily generalize the
underlying mechanisms [6]. Moreover, these applications
are everything but straight-forward to develop, because of
a lack of proper tools (e.g. debugging, testing) to support
the development process. Early works originating from the
domain of MCC [7, 8, 9, 10] address these problems and
try to generalize the mechanisms and ease their use in order
to allow more mobile applications to participate in resource
augmentation. However, most of these either lack support
for proper context adaptation and are hence not able
to meet the often inevitable latency requirements, which
prevents their direct applicability for MEC scenarios.

Filling this gap, this paper, which is an extended
version of previous work [11], discusses the potential of
self-adaptation in the light of the particular requirements
of mobile edge computing, the respective fulfilment by
existing solutions as well as the remaining challenges. In
previous work [12] the idea of a context-adaptive MEC
solution has been presented, which is now extended to a
self-adaptive mobile middleware named CloudAware that
aims at linking existing concepts of mobile middleware
with the specific requirements of MCC and MEC. To
provide dynamic adaptation through a configuration-free
programming model CloudAware employs compositional
adaptation and sensor-based reasoning to allow a flexible
adaptation to current as well as future context states that
can hardly be foreseen by developers. In particular, we
use connectivity- and execution predictions that support
the efficiency of the so-called offloading decision in MCC-
as well as MEC scenarios. In this way, more generic
and flexible scenarios that go beyond just offloading
computations become possible. To realize such scenarios
and to support a broad range of mobile applications,
CloudAware only relies on the presence of a Java Virtual
Machine which enables our prototype to augment Android
applications without modifying the underlying mobile
operating system.

The contributions in this paper can be summarized as
follows:

• Categorisation and survey of more than 40 existing
solutions and their applicability in MCC/MEC
scenarios based on an extensive requirements
catalogue derived from application scenarios and
the ISO/IEC 25010 standard.

• Presentation of our own context-adaptive
CloudAware middleware for the development
of MCC- and MEC applications that provides
programming abstractions and distribution
transparency features without modifying the
underlying mobile operating system.

• Qualitative as well as quantitative evaluation of the
presented middleware with respect to the derived
requirements and based on realistic application and
device usage data provided by the Nokia Mobile
Data Challenge campaign.

• Discussion of open challenges and future work.

The remainder of this paper is structured as follows:
Section 2 introduces the foundations of MEC and
self-adaptation. Afterwards, Section 3 describes typical
application scenarios, that are subsequently used to
derive an extensive requirements catalogue in Section 4.
Based on this, Section 5 surveys more than 40 existing
solutions. Our own approach, the CloudAware middleware
is presented subsequently and evaluated in Section 6 and
open challenges are discussed in Section 7. At the end, we
summarize our findings and give prospects for future work
in Section 8.

2. BACKGROUND

In this section we will describe MEC and mobile middle-
wares as enablers for the greater idea of pervasive comput-
ing. Hereupon we will detail a typical MEC architecture
as well as granularity levels for offloading. Finally, we
introduce the foundations of context adaptation, a feature
which enables more sophisticated offloading as used in our
CloudAware middleware.

2.1. Mobile Edge & Pervasive Computing

While Mobile Cloud Computing tries to push the
limits of mobile applications by including centralized
resources to e.g. perform computational offloading, Mobile
Edge Computing goes further by assigning the major
part of remote operations directly to the surrounding
infrastructure - an approach that has been successfully
applied to improve latencies of edge-cloud-applications
and mitigates the ever growing bandwidth requirements
[13, 14]. Here, the resources, located at the logical edges
of a network, can include LTE base stations as well as
routers providing shared resources [15] and are often
directly connected to the mobile device, as shown in
Figure 1. In this context, the concept of Cloudlets has
been introduced in [5] to represent the capabilities of
such mid-sized computing units, located at the edge of
the core network. Deploying replicated parts of a mobile
application’s business logic onto such edge computers can
then bring a large benefit to latency-sensitive tasks like
streaming or cloud gaming. Hence we consider MEC as
a main enabler for the more generic concept of Pervasive
Computing, described next.

Pervasive and Ubiquitous Computing aim at integrating
computing capabilities into our everyday life. In this
course, smart objects sense their environment and
communicate and cooperate with each other in order to
adapt to their surrounding’s needs [16]. The seamless
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integration of such (generally) resource-poor and possibly
mobile devices, which are in most cases located at the
logical edge of a network, requires the consideration
of a multitude of different and heterogeneous devices.
How a standardized execution environment can help to
accomplish this task, will be described in the following.

2.2. Role of Mobile Middleware

Due to the challenges of mobile computing in general, the
dynamics of logical and physical environments, the possi-
ble heterogeneity of context therein, and the complex inter-
play of devices in pervasive computing scenarios some
kind of abstraction that provides a standardized execution
environment, referred to as a (mobile) middleware, is
required1. While traditional middleware has been designed
to glue together different pieces of software by providing
a set of high-level exchange mechanisms, the purpose of
mobile middleware goes beyond. Traditional middleware
for stationary distributed systems has been designed with
the presumption of high bandwidth, stable connections
and high resource availability in mind. Such middleware
cannot easily be deployed in a mobile scenario that suffers
from effects like intermittent connectivity and requires an
asynchronous connection as devices are constantly enter-
ing and leaving the ad-hoc established distributed system.
Therefore, mobile middleware requires to constantly mon-
itor the users’, devices’ and environment’s context. But
as the changes in the context can be highly dynamic they
cannot be completely foreseen by the developer, requiring
the mobile middleware to anticipate the ever changing
context and dynamically reconfigure execution parameters
at runtime - namely to perform dynamic adaptation. But
there is another issue compared to traditional middleware
that is designed to hide the low-level infrastructure details
to provide a high level of transparency to the applications
running on top. It has been found useful for mobile
middleware to provide some extent of awareness to the

1In the remainder of this paper, we will refer to all of the mentioned concepts by
MEC only.
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Figure 1. MEC architecture and use-case [12]
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Figure 2. Offloading Components to Surrogates [18]

applications to allow reconfiguration techniques to gather
information about the actual execution context [17]. How
this reconfiguration in terms of computation offloading can
be achieved and what building blocks within a middleware
for mobile edge computing are required, will be detailed in
the following.

2.3. Typical MEC Architecture for Offloading

Figure 2 depicts a typical reconfiguration or offloading
process respectively. A mobile application, built up from
several components, is executed on a mobile device.
As one of the components encapsulates a computational
intensive task it is moved together with all required state
information to a so-called surrogate for further processing.
This surrogate does as requested and finally returns (only)
the results back to the original application.

To enable such kind of computation offloading,
existing MEC solutions typically employ some common
components [19]:

• A partitioner that analyzes the application and
determines which parts of the code are offloading
candidates.

• A context monitor that senses contextual informa-
tion like available surrogates, battery status and
network connectivity.

• A solver that uses information from the partitioner
and the context monitor to decide, whether and
on which surrogate to execute the offloading
candidates.

• A coordinator that handles additional necessary
tasks like discovery, authentication and synchro-
nization.

One of the main challenges in MEC is making an
optimal offloading decision. Based on [20] this includes
the following: Which components are potential offloading
candidates? Under what circumstances shall a component
be offloaded and how to perform? And where can the
component be offloaded to? The first question aims at
identifying which components may benefit (in terms of
execution time, for example) from being offloaded as
well as finding an appropriate offloading granularity for
a good partitioning of an application and its constituent
components. Answers to the second question need to take
the current context of the user, the device, the execution
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platform and the application’s execution state as well as of
the logical and possibly physical environment into account.
This is due to the fact that creating an optimal deployment
strategy, i.e. successfully and efficiently offloading a
component and receiving the results back, is strongly
dependent on the current context as will be detailed later
on. Finally, to answer the last question, where to offload
a component to, one has to consider characteristics of
possibly targeted offloading nodes in terms of available
resources and their workload, the quality and continuity
of the connection and the security of this node.

2.4. Offloading Granularity

When solving the aforementioned offloading decision,
different offloading granularities are possible. While there
exist many other granularities, many solutions can be
broadly classified into the following categories[21]:

Method offloading uses what is commonly known
as remote method invocation to perform computation
offloading and is often used in scenarios, where fine-
grained control is necessary. Instead, offloading a (self-
contained) feature such as, e.g., face recognition, is best
reflected by the classical client-server paradigm where a
client requests the execution of a parameterized remote
operation and subsequently receives the result back from
the server. These two ways of offloading are already widely
used and integrate very well with the principles of object-
oriented design, but the constant need for synchronization
of shared variables between client and server is the main
drawback [8]. Distributed object frameworks like Jini2

often make use of this principle, but they generally lack
the ability to adapt invocations to the current context, e.g.
in the case of intermittent connectivity.

The remaining two categories can be summarized as
virtual machine (VM) approaches. They consist of ’image’
or application layer offloading (e.g., Jikes rVM used in
[22]) and system layer offloading (as used by, e.g., Goyal
et. al. [23]). The advantage of application layer VMs
is that they abstract from the underlying CPU design
(ARM3-CPUs are often used for mobile devices, while x86-
CPUs are used on the surrogate side), while system-level
virtualization is favorable, if the whole environment of the
mobile device needs to be mirrored on the surrogate (e.g.,
to catch file system calls).

While feature and method offloading typically allow
the developer to control the partitioning and offloading
of an application into the infrastructure, this is typically
not the case for VM-based approaches that are not
able to fully catch the developer’s expertise and have
to rely on heuristics to optimize the partitioning and
execution strategy which can be a highly complex task
when it comes to scenarios with intermittent connectivity
where adaptation to future contexts is required. Another

2http://river.apache.org
3http://infocenter.arm.com

drawback of VM-based approaches is the requirement
to synchronize a high amount of state between the
mobile device and the surrogate, which often restricts the
offloading to one task (meaning method or thread) at a time
in order to maintain consistency and thread safety, though
this approach allows to offload unmodified applications to
the infrastructure.

2.5. Self-Adaptation

We consider an early definition applicable to our
perception of self-adaptation as referred by Laddaga in
[24]:

”Self-adaptive software evaluates its own
behavior and changes behavior when the
evaluation indicates that it is not accom-
plishing what the software is intended to do,
or when better functionality or performance
is possible.”

Current patterns for self-adaptation can be briefly
differentiated in two classes [25]: Parametric adaptation
and compositional adaptation. While the adaptation rules
in the former are often woven into the business logic,
compositional adaptation in contrast follows the paradigm
of the separation of concerns. Taking into consideration
the simple example of three parameters of which each
can have 4 states - already 64 different states are possible
and need to be considered by the developer. Considering
real-life examples that have way more parameters and
states, as also found by [26], it becomes clear that
compositional adaptation provides a far more flexible
concept to develop self-adaptive applications - whose
three main enablers, according to [27], are the separation
of concerns, computational reflection, and component-
based design. A well-known concept in this context is
the paradigm of aspect oriented programming, presented
in [28]. When the separation of concerns is achieved,
computational reflection then allows the program to reason
about its own behavior and possibly alter it, if required
[27]. Lastly, the component-based design is the paradigm
that enables self-adaptation, as it requires the developer
to partition an application into self-contained units, whose
single building blocks can either be exchanged at buildtime
(static composition) or at runtime (dynamic composition).

According to [26], self-adaptive systems can be further
differentiated by the level of anticipation they provide. If
a developer predefines the systems behavior, the degree of
anticipation is lower than in the case where no rules are
defined and the anticipation to the current context happens
dynamically at runtime, referred to as context awareness.
For a detailed definition and a complete survey of the most
relevant context modeling approaches, we refer to [29].

Recent MEC solutions consider context adaptation
only as a minor factor to allow offloading parts of the
computation to a surrogate, while we consider it the
essential criterion to enhance the user experience, which
will be reflected upon in Section 6.
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Figure 3. Application Scenario: Image Processing

3. APPLICATION CHARACTERISTICS

To further illustrate the idea of MEC, four application
scenarios are exemplified in the following from which the
first serves as a base for the evaluation presented in Section
6. Subsequently, the generalized main characteristics of
MEC applications are presented.

3.1. Image Processing

As all current smartphones have a built-in camera, mobile
image processing gains more attraction. And with the
advent of high-resolution cameras (e.g. Nokia’s Lumia
with 41 Megapixel) respective tasks become even more
challenging. Moreover, also professionals, journalists for
example, use smartphone cameras to take snapshots, which
subsequently undergo typical processing steps like noise
reduction, color enhancements, object extraction, masking,
etc. before being published. Finally, more complex tasks
like image stitching to create 360 degree panorama images
or face recognition raise the bar even higher.

Imagine you are on a trip abroad and you took a couple
of pictures and need to process them before sending them
back to your office or your friends (see Figure 3). Image
processing, especially on high resolution images, can be a
resource-intensive task, e.g. creating high dynamic range
images out of a series of pictures. You do not want to
exhaust your mobile’s resources and instead offload this
task (pictures as well as code) to a surrogate and hence
substitute processing with communication.

3.2. Interior Designer

Suppose you would like to rearrange your interior4.
Using your smartphone’s camera, you walk around in
your apartment taking a series of pictures in order to
digitally reconstruct the scene. Because 3D reconstruction
using multiple images is a computationally expensive task
[31] the photos as well as the reconstruction code are
uploaded into the nearby edge cloud. Here, the scenes are
matched, objects as well as the room geometry are photo-
optically surveyed and a complete 3-dimensional model

4This scenario is inspired by [30].

of your apartment including models of your furniture is
constructed. The results are subsequently sent back to the
smartphone. Looking through the live video stream of
your camera (or your smart glasses) you are now able
to virtually rearrange single pieces of furniture, detect
collisions, and see how the lighting is influenced. This
time, the smartphone only needs to extract image features
based on your interaction and request the construction of
appropriate overlays by the edge cloud. The low-latency
requirements of this scenario are viable for a smooth
application usage.

3.3. Bitcoin Validation

With the increasing popularity of bitcoins5, more and
more payment transactions are carried out using this
new currency6. Along with that, the allurement of fraud
increases as well. In order to validate a transaction, one
uses the so-called ’blockchain’, a several gigabyte big and
continuously growing file containing a complete history of
all transactions ever made within the bitcoin network [32].
Suppose you are on a flea market and shall receive a certain
amount of bitcoins for selling some of your belongings.
To make sure that the bitcoins are not spent twice and
really change ownership, you have to wait for several
minutes or even hours7 until the transaction is validated by
so-called miners and appended to the public blockchain.
For this purpose you can repeatedly download and check
the end of the blockchain. But doing so consumes quite
some bandwidth and energy. Alternatively, the task can
be delegated onto a nearby edge device by offloading the
validation component (along with the transaction details),
which continuously checks and validates the blockchain
and proactively informs you once your transaction is
succeeded.

5http://www.bloomberg.com/news/articles/2016-01-07/the-return-of-bitcoin-
mining, accessed 31.10.2016
6https://blockchain.info/de/charts/n-transactions-total, accessed 31.10.2016
7http://www.ibtimes.com/bitcoins-big-problem-transaction-delays-renew-
blockchain-debate-2330143, accessed 31.10.2016
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Figure 4. Application Scenario: Brain Wave Analysis

3.4. Brain Wave Analysis

Attention deficit hyperactivity disorder (ADHD) is a
mental disorder children are quite often diagnosed with8.
One new approach to cure the symptoms are brain-
controlled computer games, which force the children to
concentrate if they want to win the game9. For this purpose,
children wear a special headband or a kind of bike helmet
with an integrated EEG10, measuring electrical activity
along the scalp. Processing and analyzing the signals from
the multiple electrodes is computationally expensive and
too much of a burden for ordinary mobile devices. But with
the advent of low-cost consumer EEGs (already available
for less than 100 Euros) this kind of therapy might gain
more importance and MEC offers means to deal with the
near real-time analysis of brain waves even while on the
way.

For this purpose, a model of a child’s individual
brain wave pattern has to be trained initially in order to
distinguish mental states like ’calm’ and ’active’11. Figure
4 depicts how EEG data is fed into machine learning
algorithms to adjust their parameters.

Once the model has been trained it can be stored onto
the mobile device. Later on, when the child plays the
game, the algorithm as well as the trained model are
uploaded onto a surrogate. Then, the live EEG data is
forwarded from the mobile device to the surrogate where it
is classified according to concentration levels and only the
resulting neurofeedback is returned to the device to alter
the current state of the game.

3.5. Generalized Application Scenarios

All of the presented application scenarios (and further
ones, see [33, 12]) have a least common denominator: The
device the user interacts with has resource constraints, but
the tasks require either computational power (and energy),
loads of data, network bandwidth or additional resources.

8http://www.cdc.gov/ncbddd/adhd/facts.html, accessed 11.04.2016
9http://www.insideadhd.org/Article.aspx?id=1386, accessed 11.04.2016
10Electroencephalography, monitoring method for brain activity
11See, e.g., http://www.choosemuse.com/how-does-muse-work, accessed
11.04.2016

Depending on the context, the tasks can be offloaded to
surrogates like edge cloud devices or a cloud platform
where they are processed and the results are finally sent
back to the initiating device. In contrast to traditional
communication means (e.g., remote method invocation
(RMI) or service calls), the logic to process the tasks is
sent along with the request, hence, the surrogates do not
have to be set up beforehand. This kind of architecture,
together with proper context adaptation, can be considered
the foundation of successful future MEC applications.

To conclude, the primary objectives for using edge
nodes as intermediaries between mobile devices and
clouds are:

• Provide services or deliver content close to the
user’s access point (LTE or WiFi)

• Process or filter large amounts of data before they
are transferred

• Speed up geo-distributed applications like sensor
networks

• Perform distributed large-scale analysis of real-time
data

• Allow latency-sensitive applications like cloud
gaming and real-time video analytics

4. MAIN REQUIREMENTS

This section presents an extensive list of requirements,
based on the ISO criteria for software quality [34] and
inferred from the previously presented use cases. In the
following, we present the foundation for our survey and
evaluation of existing research efforts in Section 5.

4.1. Major Challenges in MEC

For several reasons, the development of MEC applications
performing computation offloading is a difficult task and
needs to be supported by appropriate and specialized
tools. On the one hand, established mechanisms like
inter-process communication and remote method/service
invocation cannot be employed in this context [35].
And on the other hand, developers do not only have to

6 Trans. Emerging Tel. Tech. 2017; 00:1–23 c© 2017 John Wiley & Sons, Ltd.
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deal with the challenges of classical distributed systems,
namely the heterogeneity of their constituent components
and the requirements of openness, security, scalability,
failure handling, concurrency, transparency and quality of
service [36], but are required to additionally deal with
the restrictions imposed by MEC itself, being the limited
resources, the need for context adaptation in heterogeneous
environments as well as security issues.

Over and above these challenges, an MEC solution
should also comply with general criteria for software
quality as defined by ISO/IEC 25010 (former ISO 9126)
[34], which comprise a software’s reliability, usability,
efficiency, maintainability and portability. In order to
develop a comprehensive list of general requirements for
MEC applications, we started bottom-up with adapted
ISO requirements and merged them from a top-down
perspective with specific requirements inferred from the
application scenarios presented in the previous section
to ensure the requirements have practical relevance. The
resulting list is summarized in the following (further details
can be found in [37]).

4.2. Main requirements based on ISO 25010

We conclude that the aforementioned restrictions require
an appropriate support by an underlying infrastructure
which we describe as an MEC framework. Based
on this assumption we develop criteria covering the
aspects of availability, portability, scalability, usability,
maintainability and security as follows:

Availability

Availability of surrogates has a direct impact on the
successful execution of offloaded tasks. It can be further
subdivided into four different aspects:

A1 Error Handling: Connectivity failures and trans-
mission errors between mobile devices and surrogates
should be intercepted and a local execution of the current
task initiated.

A2 Forward Error Management: Intermittent con-
nectivity issues and excessive load on surrogates should
be recognized and rebalanced by an underlying layer and
not interfere with the applications’ functional control flow.

A3 Connectivity Prediction: Future connection quality
and connection status to surrogates should be anticipated
and considered for the offloading decision.

A4 Effectiveness: Lost connections to surrogates
should not lead to blocked resources, dangling pointers or
further negative side-effects.

Portability

Portability requirements are concerned with offloading in
general and context adaptation in particular. Fulfilment of
such requirements is essential for modern MEC solutions.

P1 General Offloading Capability: The ability to
execute appropriate parts of the code on surrogates and
receive the result to shift load from the mobile device to
the surrogates.

P2 Basic Adaptation: Changes in the context should
be considered to adapt to different environments (e.g., to
re-evaluate the current offloading strategy).

P3 Advanced Adaptation: To allow more sophisticated
offloading scenarios, past, current and future (A3) context
situations need to be considered in the offloading decision
and the MEC architecture needs to be able to support
these quickly changing environments automatically (e.g.,
synchronizing relevant state information).

P4 Coexistence: The general concept of fair resource
sharing on mobile devices needs to be extended to edge
cloud-augmented apps. MEC applications on surrogates
should coexist with other applications, hence, not making
exclusive use of resources.

P5 Deployment: The deployment process of MEC
applications should be as easy as installing regular
applications, which requires ad-hoc deployment to
surrogates for advanced adaptation scenarios (P3).

P6 Openness: The framework should be able to interact
with different edge cloud service providers by using open
standards and interfaces.

Scalability

In order to increase the user experience and at the same
time not to burden the resources of a mobile device, several
scalability issues need to be taken into account:

S1 Overhead: MEC applications, if executed locally,
should have similar performance as conventional applica-
tions. The framework-based overhead should be minimal,
both on the mobile device and the surrogate.

S2 Discovery & Integration: The framework should
be able to search and integrate new remote resources
quickly and rebalance the offloading strategy to enable
the opportunistic use of resources and to make use of
specialized surrogates (e.g., providing sensors or FPGAs).

S3 Parallelization: Parallel execution by splitting up
the computation task should be supported, either automat-
ically or by established mechanisms (e.g., threads).

S4 Efficiency: Hibernation capabilities for paused sur-
rogate sessions are required to handle numerous connec-
tions to a single surrogate and quick re-establishment of
these to fulfil the low-latency requirements in MEC.

Usability

Developers and end-users shall ultimately benefit from
adopting an MEC solution and not be forced into a new
mindset. Therefore, several usability requirements shall
ideally be met.
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U1 Ease of Use: The design and implementation of
MEC applications should be easy and intuitive. Domain-
specific knowledge should not be necessary and limited to
general aspects of distributed systems.

U2 Appropriate Abstraction: Distribution trans-
parency, as an appropriate level of abstraction, should be
provided by the framework. For example, communication
details should be hidden.

U3 Tool Support: The development of MEC applica-
tions should integrate with the common development tools
and the present build processes.

U4 Hands-free for End-Users: Configuration require-
ments on the end-user side should be limited to optimiza-
tion on overall targets like battery, speed or bandwidth.

Maintainability

As middlewares and applications evolve, developers need
to make sure their software remains maintainable. In this
course, following aspects need to be considered:

M1 Determinism: In all situations the control flow of
an MEC application must be deterministic to the user,
independent of the used surrogates; just expectable time-
lags are acceptable.

M2 Debugging: Debugging and maintenance should
not be more complex as with a conventional application.
Control flow and state should be easily analyzable with
common development tools.

M3 Open Standards: Use of open standards for
communication (e.g., protocols and data formats) should
help to ease maintainability, extensibility and should
prevent vendor lock-ins.

Security

Security and privacy are two requirements that must be
fulfilled by any solution that is going to be used in practice.
This comprises:

SE1 Privacy: No data should be shared with untrusted
devices, unless assigned by the developer or the end-user.

SE2 Isolation: Execution of untrusted code should not
lead to side-effects on surrogates or compromise other
users.

In conclusion, we identified several requirements that
arise from the challenges of distributed systems in general
and are extended by MEC in particular which ideally
should be met by an MEC framework and against which
we evaluated overall 40 existing frameworks, which is
presented in the following.

5. EXISTING SOLUTIONS

Throughout the years a multitude of MEC solutions have
been published. In this section we first retrace the evolution

of MEC approaches. To ease the overview a classification
of approaches is presented afterwards. Solutions within the
same class share some common characteristics, but mostly
have their own special focus on certain aspects. Hence a
survey and detailed evaluation follows subsequently.

5.1. Evolution of MEC approaches

In terms of popularity, MEC solutions receive increasing
attention. The literature review, carried out with the
purpose of finding work that is directly related to the
domain of resource augmentation, shows a steady growth
over the years, as shown in Figure 5. The earliest
approaches like [38] or the Emerald system [39] dates
back to 1988. The first peak in 2002 is mainly related to
the emergence of VM-based solutions, the more current
peak in 2012 primarily originates from solutions that
provide a more fine-grained level of offloading granularity.
Throughout the years more than 77 different approaches
have been published in total. We selected the surveyed
solutions primarily by their publicity and for this purpose
we counted the cross references of other surveys and
publications in the field that we surveyed. Consequently,
we tried to balance the six categories accordingly while
avoiding to present too many similar solutions.

In the following, we focus our classification and survey
on solutions that fit the common mobile application
developer mindset and allow to maintain an established
toolset, which helps to keep a low entry threshold. Even
if other solutions like the MapReduce-based Hyrax [40]
provide an interesting approach in terms of parallelizing
tasks on mobile devices, they inhibit a steep learning
curve and are therefore just mentioned for the sake of
completeness.

0	

2	

4	

6	

8	

10	

12	

14	

16	

1988	 1990	 1999	 2002	 2003	 2004	 2005	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	

N
um

be
r	o

f	S
ol
u,

on
s	

Figure 5. Evolution of Mobile Edge Computing Approaches

5.2. Classification

Surveying existing solutions, we classify these according
to their nature (cf. [37]). Consequently, we first classified
them by the research strand they originate from and
subsequently by the way they are performing the
computation offloading. The native MEC solutions are
further distinguished by their offloading granularity.
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But, as indicated in Figure 6 a clear distinction is
hardly possible, because some existing solutions adopt
characteristics of more than one class. Next, the six classes
will be detailed.
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Figure 6. Overview of Classes and their Blurred Bounds

Specialized Languages Directly embedding support for
a broad range of heterogeneous offloading scenarios
into the programming language itself is incorporated by
so-called domain-specific languages. Nevertheless, they
require the developer to become acquainted with new
language syntax and programming style and require proper
support of the mobile operating system, which is currently
not the case.

Frameworks & Middlewares Frameworks and middle-
wares are a well known concept to connect heterogeneous
environments and are used to provide a uniform and higher
layer of abstraction on top of different underlying systems.
Here, the developer is just required to extend the provided
infrastructure with application-specific code. Middlewares
exist for different programming environments and by using
a specific framework, the programmer is bound to that
environment.

Distributed VMs In contrast to middlewares that require
explicit refactoring of an application, distributed VMs
are heading the complete opposite direction. They follow
a generic approach to provide a uniform execution
layer among different systems that allow the distributed
execution of applications without dealing with the
distribution details. This high degree of transparency eases
the development, but requires adequate heuristics to allow
an efficient distributed execution. In terms of intermittent
connectivity, these solutions often provide no exception
handling, but presume a stable network connection.

Pervasive & UbiComp Solutions Solutions that origi-
nate from the domain of smart homes or more commonly
ambient intelligence are designed to work on the system
level and take care of context data acquisition, resource

discovery, data distribution via distributed file systems,
automatic partitioning of applications and the distributed
execution. They are not explicitly designed for computa-
tion offloading, but instead allow to move complete pro-
cesses between different nodes in a network. Their main
strength is to explicitly handle changes in the applications’
usage context already in the design phase, by offering a
high-level programming interface for the developers. Yet,
they require the developer to become familiar with the
solution and require proper operating system support for
all participating devices.

Native MEC Solutions (non VM-based) Originating
from the ever increasing growth of mobile applications,
several approaches have been explicitly built for the
domain of MEC. They can be broadly classified into
those that rely on virtualization approaches and those
that require a more explicit handling of the MEC-
specific restrictions. For the latter, components depict a
common design principle to partition the applications’
business logic into self-contained fragments with high
cohesion. Nevertheless, most of the current solutions do
not provide features for context awareness in order to
adapt the execution strategy accordingly. This often leads
to suboptimal resource utilization and sometimes prevents
the ad-hoc interaction with nearby devices.

Native MEC solutions (VM-based) Next to the
aforementioned class there exist several solutions that
seek to provide full distribution transparency among the
involved devices. Here, complete device images or at least
parts thereof are replicated in the infrastructure and allow
to offload complete threads or methods.

5.3. Survey and Evaluation

Now that the different classes have been introduced,
a survey and evaluation of existing solution will be
presented in the following. Table I shows how each of the
requirements developed in the previous section is fulfilled
by the surveyed solutions. A low score does not generally
refer to a bad solution, but just implies that the approach
does not match the requirements for context-adaptive MEC
applications. Furthermore, one has to consider that some of
the solutions were not initially built for MEC scenarios,
e.g., the popular Gaia approach [52] performs below
average in terms of offloading capabilities but superior
in the branch of context adaptation, as being initially
designed for this purpose. The performance is presented
by a distinction whether a criterion is completely met (++),
partially met (+), not met (-) or not addressed at all (0).
To give an impression on how the scores come about,
Table II briefly summarizes the respective strengths and
weaknesses of four prominent solutions12.

12For further details we refer to the respective publications as referenced in the
table.
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Table I. Survey of Existing Mobile Edge Computing Solutions

A1 A2 A3 A4 P1 P2 P3 P4 P5 P6 S1 S2 S3 S4 U1 U2 U3 U4 M1 M2 M3 SE1 SE2

AmbientTalk [41] - ++ - ++ - + - ++ ++ 0 0 + ++ ++ - ++ 0 0 + + 0 0 0

Kairos [42] - - - 0 - - - - - + - 0 0 0 + ++ 0 + - ++ 0 0 0

Pleiades [43] - 0 - - - + - - - - - 0 0 - + + 0 + - - - 0 0

Agilla [44] - - 0 0 - - - 0 0 0 ++ - - - - - - 0 0 - - 0 0

ASM [45] 0 0 - 0 ++ - - 0 ++ - ++ 0 0 0 ++ ++ ++ ++ ++ ++ - - -

CoDAMoS [46] - - + - + ++ ++ ++ 0 ++ 0 ++ 0 0 ++ 0 ++ ++ ++ - 0 0 0

Hyrax [40] + - - ++ ++ ++ + 0 0 ++ - - ++ ++ + + 0 ++ 0 0 ++ ++ 0

COMET [47] ++ ++ - - ++ + - ++ ++ ++ ++ - ++ - ++ ++ ++ ++ + ++ + - +

Jessica2 [48] 0 - - ++ ++ - - ++ ++ ++ + 0 ++ + ++ ++ ++ ++ ++ ++ ++ 0 0

Vivendi/Chroma [49] ++ ++ 0 0 ++ ++ 0 ++ ++ ++ ++ ++ ++ 0 + ++ + ++ ++ ++ - - -

CADeComp [50] - - - - + - - ++ ++ ++ 0 0 0 ++ - + ++ 0 ++ ++ ++ 0 0

CAwbWeb [51] - 0 - - - - - 0 ++ ++ - 0 - - - + ++ ++ 0 0 ++ - -

GAIA/MobileGAIA [52,53] - + - ++ - + - ++ ++ ++ ++ ++ 0 ++ ++ ++ 0 ++ ++ 0 - ++ ++

Ghiani [54] - - + ++ - ++ ++ ++ ++ - - ++ - 0 + ++ ++ + ++ + ++ + ++

MDAgent [55] - - - - ++ - - 0 ++ ++ 0 + 0 0 - ++ ++ 0 ++ ++ ++ ++ 0

MOB-Aware [56] ++ - + - ++ + + 0 0 0 ++ - - - ++ + ++ - ++ ++ 0 0 0

AIOLOS [57] ++ ++ 0 0 ++ ++ 0 ++ ++ ++ ++ 0 0 0 ++ ++ ++ 0 ++ ++ ++ ++ 0

AlfredO [58] - - - - ++ - - ++ - - ++ - - - + + ++ ++ ++ ++ ++ ++ 0

CMH Application [59] 0 0 0 0 ++ - - ++ ++ ++ - 0 0 0 ++ ++ + 0 0 ++ ++ 0 0

Cuckoo [10] ++ ++ + ++ ++ ++ + ++ + ++ ++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ + -

exCloud [60] 0 ++ 0 0 ++ 0 0 ++ ++ ++ ++ 0 ++ 0 ++ ++ ++ 0 - - 0 0 0

Giurgiu et al. [61] - - + 0 ++ ++ ++ ++ ++ ++ ++ ++ - ++ ++ ++ ++ ++ ++ ++ ++ 0 0

Gu et al. [62] - - - ++ ++ - - ++ ++ ++ ++ ++ - + ++ ++ ++ + ++ ++ 0 0 0

Huerta-Can. et al. [63] - ++ + ++ ++ ++ + + ++ + ++ ++ - - ++ ++ ++ 0 ++ + ++ ++ ++

IC CLOUD [64] - 0 ++ - ++ ++ ++ 0 0 0 ++ - ++ - ++ ++ ++ 0 ++ ++ 0 ++ 0

MOCHA [65] - - - - + - - + - ++ 0 0 + - 0 0 0 ++ 0 0 0 0 0

NAM4J [66] 0 0 - ++ ++ + - ++ ++ ++ ++ ++ - 0 ++ ++ ++ - ++ ++ ++ - -

Odessa [67] ++ ++ ++ 0 ++ ++ ++ ++ - - ++ ++ ++ 0 ++ ++ 0 ++ ++ ++ 0 0 0

Scavenger [68] 0 0 - 0 ++ ++ - ++ ++ ++ ++ ++ ++ 0 - ++ ++ ++ ++ ++ ++ ++ +

Zhang [69] 0 - - 0 ++ ++ - ++ ++ ++ ++ - ++ ++ - - ++ ++ ++ ++ ++ - -

μCloud [70] - - - 0 ++ - - ++ ++ - 0 0 - 0 ++ ++ ++ + ++ ++ - - -

AgentISR [71] ++ - ++ - ++ + - ++ ++ 0 - 0 ++ 0 ++ ++ ++ ++ ++ ++ ++ ++ ++

Chen et al. [72] - - - + ++ - - - ++ ++ ++ - 0 + ++ ++ ++ 0 ++ ++ ++ - -

Cirrus Clouds [73] - ++ ++ 0 ++ ++ ++ ++ ++ ++ ++ ++ ++ 0 ++ ++ ++ ++ + - - 0 0

CloneCloud [8] 0 0 - 0 ++ - - ++ ++ ++ + + - 0 ++ ++ ++ ++ + - ++ - 0

Jupiter [74] + - - 0 + 0 0 ++ - ++ ++ 0 0 0 ++ ++ 0 ++ ++ ++ ++ 0 0

MAUI [7] ++ - + ++ ++ ++ + ++ ++ ++ - + - ++ ++ ++ ++ ++ ++ ++ - ++ 0

Slingshot [75] ++ + - ++ ++ - - ++ ++ ++ ++ + - + + + ++ - ++ ++ ++ - -

ThinkAir [9] ++ ++ + ++ ++ ++ + ++ + ++ ++ + ++ ++ + ++ ++ ++ ++ ++ ++ - -

Hung et al. [76] 0 - - ++ ++ ++ 0 ++ ++ ++ 0 0 ++ 0 - - ++ ++ ++ - 0 ++ ++
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5.3.1. Summary of the Evaluation
Summarizing the analysis and evaluation, it can be

concluded that the usability and maintainability of the
surveyed solutions are performing equally well. We argue
that this is the case because most solutions try to integrate
into common development tools and build processes.

Though, the ease of use (U1) could be enhanced. Another
aspect, performing equally well, is the portability of
the evaluated approaches. Here, coexistence (P4) and
deployment (P5) are receiving top scores, while basic
adaptation (P2) and in particular advanced adaptation
scenarios (P3) still could experience improvement.
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Table II. Excerpt of surveyed MCC solutions

CloneCloud ThinkAir Cuckoo eXCloud

Availability no connectivity loss recov-
ery, no forward error man-
agement

connection recovery,
forward error
management, connectivity
prediction, dynamic
surrogate usage

connection recovery,
forward error
management, connectivity
prediction, temporary
surrogate for execution
measurement

automatic migration from
unavailable or busy surro-
gates

Portability not context-aware,
offloading strategy chosen
at startup, no vendor
lock-in

adaptation through con-
nection profiling, provides
multiple VM profiles

offloading decided at run-
time, surrogate reachabil-
ity checks

duplicates methods at
bytecode level, fine
grained offloading

Scalability simple deployment, bad
discovery

automatic scaling through
VM-Manager,

surrogates must be prereg-
istered

dynamic migration

Usability automatic transformation
of applications, no
code modifications, no
additional setup by users

code annotations
required, selection
between energy- or
time-efficiency, provides
UI for configuration

adaptations for Android
AIDL, selection between
energy- or time-efficiency,
surrogates must be prereg-
istered

transparent movement of
code to a VM-based surro-
gate

Maintainability bytecode and threading
information for debugging

exceptions rethrown on
client, debugging through
virtualization

debugging through IDE
integration, offloaded
methods have locale
implementation

debugging through IDE

Security not existent not existent methods can be declared as
”not-offloadable”

not existent

Focusing the aspect of context adaptation, our analysis
revealed that only very few MEC applications provide
some basic adaptation techniques and would highly benefit
from improvement. Regarding the scalability it can be
stated that the evaluated solutions perform moderately.
In particular, the discovery and integration (S2) could be
enhanced to include support for ad-hoc-like opportunistic
computing scenarios.

In addition to the mentioned obstacles regarding
portability, another important criterion for context-
adaptive MEC applications is the availability of the
provided services, especially relying on forward error
management (A2) and connectivity prediction (A3), which
both are non-trivial tasks to carry out and need further
research. Ultimately, security is often disregarded in
the surveyed solutions, but will probably receive more
attention when ready-to-market products evolve from
current research efforts.

As already stated in [19], many MEC solutions rely on
virtualization approaches. We assume that this is the case,
because virtualization is a convenient way to deal with the
heterogeneity in MEC scenarios. Solutions to highlight are
the ThinkAir [9] approach for its good usability achieved
by a smart integration into common development tools,
only requiring the developer to mark offloadable methods
via annotations and allowing a dynamic adaptation to
heterogeneous surrogates by making use of virtualization
techniques. Compared to the often-quoted CloneCloud [8]
solution, ThinkAir provides better support for scenarios
with a quickly changing context. Another solution to
mention is Cuckoo [10], relying on the AIDL-interface
(Android Interface Definition Language) and providing an
Eclipse plugin, it appears to be one of the easiest-to-use

solutions, performing equally well in terms of adaptation,
scalability and portability.

Despite being easy to handle and intuitive, the VM-
based solutions all share a common feature: They are
not able to fully catch the developers’ expertise and have
to rely on heuristics to optimize the partitioning and
execution strategy which can be a highly complex task
when it comes to scenarios with intermittent connectivity
where adaptation to future contexts is required. Another
drawback is the requirement to synchronize state between
the mobile device and the surrogate, which often restricts
the offloading to one task (meaning method or thread) at a
time in order to maintain consistency and thread safety.

An interesting solution for MEC scenarios that
addresses the aforementioned restrictions is a component-
based approach presented by Giurgiu et al. [61]. They
require the developer to model the application architecture
with functional components. Every component of the
application has memory consumption, generated input
and output traffic, and code size. Using a resource
consumption graph, they calculate the optimal distribution
of the components. Focusing the important aspect of
context adaptation, remarkable solutions to mention are
IC-Cloud [64] and Cirrus Cloud [73] having a strong
focus on intermittent connectivity and being one of the
few solutions that allow advanced adaptation scenarios by
considering both, present and future context.

Summarizing the previous findings we conclude that
recent work has concentrated on improving usability,
partitioning and scalability issues, but that more complex
requirements like parallelization and proper context
adaptation still remain open to some extent. Several
solutions have been proposed to contribute to the field of
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MEC by addressing the presented requirements mentioned
in Section 4. However none of the presented solutions are
ready-to-use solutions, as they are unable to address all the
requirements.

6. CLOUDAWARE

CloudAware differs from previous or similar approaches
in the domain of MEC and context-adaptive mobile
middleware by its primary design goal to support ad-
hoc and short-time interaction with not only centralized
resources, but also nearby devices. This idea is extended
by the secondary design goal, which is to provide an
uninterrupted availability of a mobile application even if no
surrogates are available or the connection gets interrupted
by using the mobile device as a fallback. It remains the
primary instance to hold the mobile applications’ relevant
state. To achieve this type of spontaneous interaction,
classical client-server solutions, service composition, or
prominent MCC approaches are often not suitable as they
are not able to either cope with the requirements of the ad-
hoc interaction or as they are not as lightweight enough
to meet the limited resources of a mobile device. How
CloudAware faces these restrictions and which general
assumptions motivate specific design decisions has been
described in previous work [12] and will in the following
only be summarized, while the focus of this section is
the evaluation of the prototypical CloudAware mobile
middleware that is evaluated using real data from the Nokia
MDC dataset, introduced afterwards.

6.1. CloudAware Design Goals

To perform offloading, a prominent solution like
CloneCloud for example uses a complete image of a
mobile device which is running in a virtual machine on
a server to execute parts of an application and decides
at runtime which threads to offload by using a decision
metric based on previous method calls that are analyzed
through a profiler regarding their energy usage. The
employed heuristics to decide about the offloading further
include aspects like the state size, approximate CPU cycles
to save, bandwidth, latency, etc.

Along with handling these constraints it often comes to
the question how the construed distributed system should
behave in the common case of intermittent connectivity,
when the connection between the mobile device and
the surrogate is interrupted. Following the CAP-theorem
it is only possible to achieve two of the three criteria
(consistency, availability and partition-tolerance) in a
distributed system, but not all three. Hence, in a system
with intermittent connectivity one can either go for a
shared state between the mobile application and the
surrogate, but this requires the mobile application to
wait until the connection to the surrogate has been re-
established (VM-based solutions, see Section 2.4 and 5.2).
Or, to avoid this, it can be more practical to decide which

part of the distributed system holds the (primary) state
information. To further narrow the selection it is often
practical to go for the latter and to only hold the state on the
mobile device and just synchronize with surrogates what is
necessary at the relevant points in time.

But like CloneCloud, most of the solutions assume a
stable connection to the surrogate and do not explicitly
handle the effects of link failures. But even state of the
art solutions in terms of a fault-tolerant design (e.g., [61])
do not consider the current context in order to adapt
migration strategies which are hence often suboptimal and
do not allow for dynamic adaptation. As an evolution to
the mentioned solutions in the domain of classical MCC
other solutions have been proposed that take the effects of
intermittent connectivity into consideration, but are often
limited to this single context fact.

Instead CloudAware’s adaptation architecture has the
main goal to be completely generic in terms of the
context features that are used for the offloading, so that
application developers can concentrate on the business
logic and are not required to deal with the effects of the
quickly changing context. Nevertheless, they can do so
by using annotations or simply weaving the information
provided by CloudAware’s context monitor directly into
their business logic. CloudAware just relies on a common
set of context features that are available on almost every
mobile device to predict the optimal execution strategy
by taking into consideration the success of the execution
and the execution metrics (like time, network and energy
consumption) to align the execution plan with the global
offloading target.

Concluding the previous explanations and resuming the
general objectives of MEC applications that have been
worked out in Section 2, the specific design goals of
CloudAware can be summarized by the following key
objectives:

• Speed up computation through parallelization
• Save energy or bandwidth by offloading computa-

tions
• Enable offloading for diverse mobility scenarios

This way, we are enabling (future) complex applications
on resource-constrained mobile devices by dynamically
adapting their execution to changing conditions in their
physical and logical environment.

6.2. Runtime Environment

CloudAware uses the principle of ”active components” a
concept developed along with the Jadex [77] middleware.
The paradigm of active components unifies component-,
agent-, and service-oriented engineering perspectives, to
provide a robust and scalable infrastructure in distributed
computing environments. Jadex not only ships with several
tools to ease the development (like debugging, message
inspection, simulation), but also supports - among other
features - diverse asynchronous communication styles
(remote method calls, transparent service invocations,
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message passing and interaction protocols) as well as
secure messaging, an efficient binary message encoding,
the creation of ad-hoc networks, service discovery and
NAT traversal over relay servers to bypass firewalls. Jadex
has been chosen to serve as a base for CloudAware
because it ideally complies with general requirements of
mobile cloud environments like distribution, concurrency
and failure tolerance mechanisms.

Moreover, the Jadex middleware runs on desktop
computers and servers as well as on a broad range of
mobile devices, including the Android platform as it
requires no modification of the mobile devices’ operating
system, but just relies on the presence of a Java Virtual
Machine that is available out of the box for almost any
device.

While carrying out our design decisions we rely on
the simple principle to build as much as possible upon
widespread commodity software, to leverage the reliability
that comes through extensive testing. Hence, we employ
standard Java and Android technology, extended by the
Jadex runtime environment that we use to implement the
functionalities required in CloudAware to perform MEC.
For example, to separate front-end user interaction from
the offloadable back-end tasks, we make use of Android’s
service concept by using the Android Interface Definition
Language (AIDL) specification. This allows developers
to easily benefit from the offloading capabilities, while
changes to their present applications remain small and are
limited to the back-end of the application. Furthermore,
this allows the coexistence of regular and cloud-
augmented applications as they participate in the standard
Android mechanisms like resource scheduling and power
management. Hence, no modification of the Android
operating system is necessary, enabling the majority of
current smartphones to directly benefit from CloudAware’s
feature set.

Figure 7 depicts a bird’s eye view on the resulting
execution platform on mobile devices. As already
mentioned, Jadex and hence CloudAware support the
Android platform. While Jadex runs in an Android
process, the CloudAware components are executed in
several independent threads. Thereby, we can easily
distribute load on multiple processor cores, while Jadex’s
asynchronous way of execution prevents deadlocks.
Finally, MCC applications designed for CloudAware
are running encapsulated in specialized CloudAware
components, hence developers may just follow an object-
oriented approach to implement their applications using
the CloudAware API.

Along with this, several further services are required,
as mentioned in Section 2.3. These include the Discovery
Service, whose task is to integrate the different network
interfaces, as well as the Solver and the Coordinator that
are in charge of extending the mobile application into the
infrastructure. Furthermore, the Context Manager supports
the decision of the Coordinator by providing relevant
information about the mobile device’s context.

6.3. Nokia MDC Dataset

In January 2009, the Nokia Research Center Lausanne
(NRC), the Idiap Research Institute, and the EPFL initiated
the creation of a large-scale mobile data research. This
included the design and implementation of the Lausanne
Data Collection Campaign (LDCC), an effort to collect
sensor data from smartphones created by almost 200
volunteers in the Lake Geneva region over 18 months [78].
To our knowledge it is the largest dataset that contains
information about mobile devices as well as application
usage statistics, which is why we chose the Nokia MDC
dataset to derive the following information as input to a
simulation with the CloudAware mobile middleware:

• GSM/WiFi/Bluetooth state (on/off), discovered
MAC addresses and GSM cells, signal strength of
WiFi as well as GSM cells, extended with our
own measurements to get an assumption about the
available bandwidth.

• General information about the mobile device itself:
time since the last user interaction, silent mode
switch, charging state, battery level, free memory.

• Date, time, location, calendar events, average and
predicted remaining duration of stay at the current
location.

• Reasoned attributes: remaining duration of stay
at the same WiFi AP or GSM cell, user is at
home/work, travelling, moving, resting.

• Application usage data: The applications the user
interacts with and the specific screens of these
applications.

6.4. Generic Context Adaptation Process

One of CloudAware’s main features are context adaptation
features that have been described in previous work [33]
as the Generic Context Adaptation (GCA) process and
will in the following be briefly summarized. GCA has
been designed as a lightweight data mining process that
is tailored to forecast arbitrary context attributes out of a
provided feature set. More formally, GCA represents a data
mining process that provides three types of predictions: A
binary classifier (e.g. for predicting the future availability
of a WiFi), a multi-class classifier (e.g. to predict a
bandwidth range) and a regression mode to forecast real-
valued attributes like the execution time of an offloaded
task. This way, historical data that has been collected by
the mobile device can be used to forecast a future value of
a certain context attribute.

To perform a prediction the GCA process needs to be
provided with the historical input data in the structure
that is used in the Nokia MDC dataset. It is furthermore
required to choose the context attribute to be predicted,
the context interval (that is required to assign different
measurements to a specific time interval) and the forecast
horizons (how many time intervals into the future) to
initiate the learning phase. The resulting predictive model
can then directly be applied to forecast the chosen context
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Figure 7. CloudAware: Execution Platform and Architecture [18]

attribute. The data used in the GCA process is mainly
the same as in the MDC and is just converted to a
representation that is suitable to be presented to machine-
learning algorithms. More specifically, GCA runs as a
service on top of the Jadex middleware that performs two
major tasks: collecting sensor data and providing context
for certain context attributes. To perform the first task, the
following context attributes are generated, based on the
information provided by the MDC dataset:

• The state (on/off) of the different network interfaces
(GSM, WiFi, Bluetooth) and the information to
which Cell-ID or access point they are connected.

• The current location, mainly in terms of the
proximity to certain GSM cells or access points.

• Calendar events and call- and sms-logs.
• The activity of the user (walking/sitting/running).
• State of the mobile device depicted by the time

elapsed since the last interaction with the user, the
current profile (e.g. silent mode) and the remaining
energy.

• Used applications: The information which applica-
tions are used and which screens and functions the
user accesses.

These features are subsequently used to provide the
following forecasts to the CloudAware coordinator that
manages the task execution:

• Remaining energy available on the mobile device.
• Probability if a certain task will execute on a

specific surrogate.
• Execution time of a certain task on a specific

surrogate.
• Bandwidth available to and from a specific

surrogate (in a future time interval).
• Future connectivity to a specific surrogate in a

future time interval.

To be used together with CloudAware, the GCA process
is designed to be executed on a mobile device. As the
preprocessing is performed in SQL and the application of
the data mining models is performed in Java, the process
is able to run on any (mobile) device that provides a

Java virtual machine. Nevertheless, the training of the
data mining models is computationally intensive and
is currently intended to run on more powerful cloud
resources, whereupon the trained model is transferred to
the mobile device to be used for predictions. We currently
use an interval of 5 minutes to collect the required sensor
data to not drain the battery too much.

6.5. Evaluation

The evaluation of CloudAware is done qualitatively as
well as quantitatively. Within the qualitative evaluation,
a descriptive assessment is carried out as to whether the
non-functional requirements (cf. Section 4) are fulfilled
and whether these could be implemented within the
scope of the prototypical implementation. Subsequently,
the quantitative evaluation evaluates the nonfunctional
requirements by means of collecting certain key indicators
in the use of CloudAware. This separation takes place in
order to be able to evaluate non-functional criteria such as
the performance, which can be determined comparatively
simply quantitatively, as well as criteria such as the
maintainability of the solution, which are easier to evaluate
qualitatively.

6.5.1. Qualitative Evaluation
For the qualitative evaluation of CloudAware, the

criteria stemming from the requirements analysis are
assessed descriptively and summarized in Table III.

Availability With respect to the error handling
CloudAware tries to compensate for failed execution
of individual tasks by re-executing them using an adjusted
adaptation strategy if execution is regarded promising in
the given context (requirements A1 and A2). In order to
assess the efficiency of a particular adaptation strategy
with regard to the respective adaptation goal and the
execution probability of a task, CloudAware uses a series
of forecasts, e.g., the future connectivity of a surrogate
(requirement A3). For reasons of efficiency and in order to
neither overload the mobile device nor the infrastructure,
tasks are not re-initiated until their current execution is
rated as unsuccessful (requirement A4). However, tasks
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Table III. Qualitative Evaluation of CloudAware

A1 A2 A3 A4 P1 P2 P3 P4 P5 P6 S1 S2 S3 S4 U1 U2 U3 U4 M1 M2 M3 SE1 SE2

++ ++ ++ + + ++ ++ + + ++ + + + + ++ ++ ++ + + ++ + + -

++ ++ ++ + + ++ ++ - + ++ + + + - ++ ++ ++ + + ++ + + -

CloudAware (Concept)

CloudAware (Implementation)

that are already running in the infrastructure can only be
terminated if there is still a connection to the respective
surrogate.

Portability The general ability to integrate the infras-
tructure into the context-adaptive execution is realized by
CloudAware’s capability to offload certain tasks (require-
ment P1). CloudAware thereby ensures that the different
tasks are adapted appropriately with regard to the respec-
tive adaptation goal in terms of execution time, execution
location and implementation (requirement P2 and P3).
CloudAware and its system support do not make any exclu-
sive use of the mobile device’s resources and integrate
as an equivalent operating system process (requirement
P4). However, since the system support is not integrated
into the operating system, tasks such as the search for
available surrogates are only conditionally compatible with
the energy-saving mechanisms of the mobile device. Like-
wise, cross-application coordination of different context-
adaptive applications is limited due to the isolation of
applications implemented in the Android system platform.
This type of deployment, however, corresponds to the
usual installation of mobile applications, supports a simple
deployment process, and requires only the existence of a
Java virtual machine (requirement P5 and P6).

Scalability The overhead, which is essentially created
by acquisition and storage of the various context
attributes was minimized by restricting the acquisition
of context data to certain intervals and determination of
available bandwidth to periods in which context-adaptive
applications are running. Qualitatively, the overhead
can thus be regarded as justifiable (requirement S1).
Conceptually, both a proactive and a purely reactive
approach to service discovery were developed. However,
only a reactive discovery was implemented due to the
overhead mentioned above (requirement S2). The concept
of task-based adaptation allows to design concurrent tasks,
while the correct execution is ensured by using the actor
model of the Jadex middleware. Accordingly, without
further adjustment of the business logic by the developer,
it is possible to perform parallel processing of tasks
(requirement S3). However, the possibility of pausing
offloaded tasks on surrogates was not implemented
(requirement S4) because of the required efficiency and the
lower probability of successful task execution.

Usability As demonstrated by the implementation of
the example application, the use of CloudAware requires
only basic knowledge in component-oriented software

development (requirement U1). The specific problems
related to mobile cloud computing are largely hidden
from the developer (requirement U2). The CloudAware
framework integrates into the development process
of mobile applications and the corresponding tools
(requirement U3). Configuration is done by simply
choosing optimization objectives, such as the saving of
energy, bandwidth or execution time (requirement U4).

Maintainability Regarding the maintainability it can be
stated that the technical control flow of the application is
independent of the surrogates used, the execution context
or the adaptation strategy and is only delayed within the
scope of the adaptation goals - hence it is deterministic
(requirement M1). The solution also integrates with the
development process and the (debugging) tools for mobile
applications (requirement M2). Moreover, only freely
available basic technologies are used in order not to depend
on a particular service provider (requirement M3).

Security The protection of the confidentiality of infor-
mation processed by a context-adaptive application can
be established by providing special annotations for corre-
sponding components within the source code (requirement
SE1). In addition, by using the Jadex middleware, secure
communication is ensured within a shared infrastructure
and within public networks. Protection mechanisms which
are intended to avoid side effects on surrogates by execut-
ing non-trustworthy code have not been addressed in the
current conception (requirement SE2).

6.5.2. Quantitative Evaluation
The quantitative evaluation is performed by picking

20 users that provided data for at least 18 months from
the Nokia MDC dataset and by using the provided
context attributes to design an event-based simulation
that considers the connectivity (i.e. latency, intermittent
connectivity and round trip times) of a mobile device
as well as the battery drain, charging state, the limited
computational power as well as the energy that is required
to compute and to send or receive a specific amount of
data via a specific interface (WiFi or GSM). The developed
sample application is inspired by the application scenario
mentioned in Section 3 and applies different image filters.
It produces 20 different types of tasks. For each task
the execution time, its variance, as well as input and
output sizes (i.e. the amount of data that needs to be
transferred if offloaded) have been measured and linked
to real application events, that have been recorded in the
MDC dataset.
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Simulation of the infrastructure The used infrastruc-
ture consists of a Samsung Galaxy S5, running the sam-
ple application and representing the mobile device. The
devices’ battery level found in the MDC dataset is con-
sidered a baseline. The prototyped sample application is
considered to generate an additional battery drain, there-
fore all tasks could only be successfully executed if the
mobile device would be connected to an energy source at
all times. As this is not the case, the successful execution
of all tasks cannot be achieved.

The cloud is simulated by measurements from and
to a virtual server running at a German cloud service
provider. To reflect the MEC scenario we furthermore
assume cloudlets with the performance of an up-to-
date desktop computer to be available at the three most
frequently visited locations of each user. Furthermore, due
to their limited resources, these cloudlets are assumed to be
overloaded at certain times of the day, resulting in longer
execution times or even timeouts that lead to unsuccessful
offloading.

Scheduling and optimization goal For each of the
offloadable tasks, it is decided whether to offload this
task to a cloud server or a Cloudlet by predicting its
probability to be executed successfully, meaning that the
result is returned to the mobile device. All tasks are
equally important and therefore they are executed in
the order of their invocation time, with the exception
that already computed tasks may return to the mobile
device with a higher priority. The offloading decision is
furthermore influenced by choosing the alternative with the
minimum invocation time and if equal the lowest energy
consumption.

Description of evaluated scenarios In the following,
the different scenarios that are used to evaluate the
CloudAware mobile middleware are described. Common
to all scenarios is the schedule of application events that is
derived from the MDC dataset. What differs for the first
three scenarios is the offloading strategy that is mainly
influenced by the available infrastructure, derived through
the GSM link status and signal strength as well as through
the WiFi connection state that is found in the MDC dataset.

Mobile Only: All tasks are being executed on the mobile
device. The success rate in this scenario is limited
to 86% as the additional energy that is consumed by
the sample application produces additional periods
of time in which the mobile device has run out of
energy.

Cloud Only and Cloudlet Only: All tasks are being
executed on the respective surrogate. In both
scenarios, the success rate is limited, as sending
tasks to and receiving tasks from the surrogate
consumes additional energy by using the GSM or
WiFi interface of the mobile device.

2=alle Services auf allen Geräten verfügbar  1=27% nicht auf Mobile verfügbar
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1 Paper2 5479 1 0 3412 572 3984 3984 0 0 13212 13220 0 0 0 11798 0 0 0 9530 45173 0 0 45173 48770 0.86

2 Paper2 5479 2 0 3061 923 3984 0 3984 0 20039 32462 5673 3664 9337 11798 4709 3480 8189 8284 0 10525 0 10525 11687 0.77

3 Paper2 5479 3 0 692 3292 3984 0 0 3984 6657 11573 261 3790 4051 11798 133 1968 2101 3834 0 0 1263 1263 3926 0.17

4 Paper2 5479 4 0 3283 701 3984 1307 2677 0 18816 29973 3236 3650 6886 11798 2732 3471 6203 9145 4554 5321 0 9875 11928 0.82

5 Paper2 5479 5 0 3256 728 3984 924 3060 0 20264 32350 5054 3659 8713 11798 4471 3475 7946 9074 2371 8477 0 10848 12992 0.82

6 Paper2 5479 6 0 2713 1271 3984 2661 0 1323 14789 19574 130 3723 3853 11798 77 1929 2006 9360 29967 0 1050 31016 40984 0.68

7 Paper2 5479 7 0 2701 1283 3984 2637 0 1347 14851 19690 238 3728 3966 11798 133 1929 2063 9360 29841 0 1188 31029 41081 0.68

8 Paper2 5479 8 0 2659 1325 3984 1283 1410 1291 16892 28114 3251 3697 6948 11798 2740 1919 4659 9212 4559 3626 939 9123 12942 0.67

9 Paper2 5479 9 0 2623 1361 3984 899 1776 1309 18309 30467 5074 3702 8776 11798 4432 1924 6356 9131 2366 6662 1053 10081 14210 0.66

10 Paper2 5479 10 0 3283 0 3283 633 2650 0 18727 29808 3203 3621 6824 9730 2732 3471 6203 9078 5519 6405 0 11925 11925 1

11 Paper2 5479 11 0 3256 0 3256 239 3017 0 20163 32104 4941 3626 8567 9627 4471 3475 7946 8974 2888 9979 0 12867 12867 1
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14 Paper2 5479 14 0 2659 0 2659 632 1394 633 14718 24031 3215 2050 5265 8167 2740 1919 4659 7530 6807 5388 743 12938 12938 1

15 Paper2 5479 15 0 2623 0 2623 238 1743 642 16096 26251 4907 2054 6961 8016 4432 1924 6356 7380 3577 9647 838 14063 14063 1

16 Paper2 5479 16 0 3296 688 3984 2017 1379 588 16885 25394 2980 1982 4962 11798 2594 1819 4412 9212 11747 3434 471 15652 17948 0.83
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Figure 8. Offloading targets for tasks

2=alle Services auf allen Geräten verfügbar  1=27% nicht auf Mobile verfügbar
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Figure 9. Success rates and execution times

MCC Speedup and MEC Speedup: Tasks are being
assigned to the respective surrogate (either a
cloudlet or a cloud server) or the mobile device
based on the aforementioned scheduling strategy.
In this way, tasks are only offloaded if the remote
processing of the task on the respective surrogate
is expected to consume less time than the local
execution.

CloudAware: Tasks are being assigned to the cloud,
the cloudlet or the mobile device based on the
aforementioned scheduling strategy. Even if this
strategy appears equal to the previous one, the
higher bandwidth and lower latency to the cloudlets
(the cloud servers are connected through a DSL
connection in our simulation) can result in higher
execution speeds.

CloudAware supported by GCA: Same as CloudAware
scenario but the context manager of the
CloudAware middleware provides predictions
about the probability for a specific task to
be successfully executed on a surrogate and
furthermore predicts the expected time to execute.
This information is used to decide about the
offloading target.

Discussion Table IV reflects the results of our simula-
tion, together with Figure 8 and 9 it can be seen that
the local execution (Mobile Only), reflecting the baseline,
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allows an execution of 86% of the simulated tasks while
achieving an average execution time of 48.8 seconds. The
cloud-based execution results in a success rate of 77%
while achieving an average execution time of 11.7 seconds.
As expected, the execution time is lower but due to the
limited network coverage of the mobile device, the success
rate is lower as well. The ”Cloudlet Only” version of
this scenario allows even lower execution speeds of 3.9
seconds but the success rate is only 17% due to the limited
reliability of the Cloudlet (see simulation setup).

Comparing these baselines to the standard offloading
cases in mobile cloud computing (MCC Speedup) and
mobile edge computing (MEC Speedup) it can be seen
that offloading based on a simple cost function to reduce
the execution time is not always able to improve the
service quality of mobile users as the success rates are not
always higher, which is due to the case that intermittent
connectivity sometimes prevents the successful completion
of an offloading task.

Compared to this, it can be concluded that already
the baseline version of CloudAware provides a speedup
of 276% while executing 67% of the tasks. Using the
GCA-supported version of CloudAware further reduces the
average energy consumption about 15% while it is the
only scenario maintaining a similar success rate (83 %)
compared to the local execution.

In this way, CloudAware is able to distribute the
workload of mobile applications into edge clouds, which
allows energy savings as well as significant speedups
in application execution for mobile devices. To achieve
the savings, CloudAware takes into consideration the
context of these mobile devices to allow an efficient and
dynamic context adaptation that even anticipates future
context scenarios that cannot be foreseen by the developer.
Compared to other solutions in this domain, CloudAware
does not require the developer to provide any adaptation
logic to anticipate this future context but is able to
learn the required adaptation logic by using its generic
context adaptation features. Moreover, CloudAware is
especially construed to deal with the effects of intermittent
connectivity and to address the lack of proper context
adaptation. In contrast to other related work in this area,
the specific focus of this work is on computation offloading
techniques that fit into the common development process
of mobile applications as well as the developers’ mindset.

7. CHALLENGES AND FUTURE WORK

Along with the previously mentioned obstacles, there exist
further issues, preventing the extension of current research
efforts to market-ready products. Separated into direct
practical limitations and open research issues, the main
challenges are presented subsequently.

7.1. Current Limitations

Several limitations currently hinder the development and
deployment of MEC applications.

Table IV. Simulation results

Energy
(kJ)

Transfer
(GB)

Time
(s)

Success
(%)

Mobile Only 4928 0,0 48,8 86
Cloud Only 7474 17,1 11,7 77
Cloudlet Only 2483 6,0 3,9 17
MCC Speedup 7018 12,8 11,9 67
MEC Speedup 5516 5,7 41,0 68
CloudAware 6300 11,3 12,9 67
CloudAware
+ GCA

6003 13,0 17,9 83

Limited Network Coverage: The by far biggest
limitation is the network coverage. Even if coverage
and bandwidth of wireless networks have increased over
the years, connectivity metrics are not comparable to
those of wired networks. Mainly, the issue of intermittent
connectivity brings several restrictions that current MEC
applications try to weaken, but which cannot be completely
compensated. This often prevents the seamless execution
of mobile applications in edge cloud environments [79].

Lack of Centralized Infrastructure: Another aspect
is the fact that there is currently no infrastructure of
surrogates offered by vendors (except from central cloud
providers) that could be used for offloading tasks and no
business plan or pricing model exists that could convince
providers to establish these. Furthermore, even though
highly relevant use cases exist, there still is no high demand
for services that benefit from edge cloud augmentation
(’killer app’) that could justify the investment in such an
infrastructure.

Lack of Incentive Models: If users are requested to
share their devices with other users, a certain benefit needs
to be provided to them to achieve a high acceptance
and participation in this kind of user-based collaboration.
These benefits can either be monetary or incentive-based
(e.g., receiving offloading capacities of others by providing
one’s own resources). In terms of monetary incentives it
is still unclear who provides them and how the business
model and its actors might look like. In the latter case,
according to [19], it remains uncertain how credit is
represented, how the price of resources will be determined
and how transactions are processed in a mobile edge cloud
environment.

Security Issues: The distributed execution of mobile
applications in an untrusted environment is inherently
insecure. On a network level distributed services are
susceptible to , e.g., denial-of-service and man-in-
the-middle attacks, either temporarily disabling the
service outright or jeopardizing private data. The MEC
infrastructure must also be safeguarded to physical damage
resulting in data loss, service manipulation through faulty
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VM configurations or privilege escalations resulting in
data and privacy leaks [80, 81]. Users need to feel
confident about distributing their private data into a
shared environment. As found in the performed evaluation
in Section 5, security is often mentioned, but seldom
considered in the implementation and the prospects for
future work. As stated in [23], security-aware offloading
can only be achieved in a trusted environment, which can
only be realized by implementing a chain of trust on all
participating devices of a mobile edge cloud. This not
only includes surrogates, but the network infrastructure
components as well. Worth mentioning are incentive-based
models like proposed in [82] that try to mitigate these
restrictions.

7.2. Further Areas of Research

As stated in Section 4 the limitations of mobile devices
can be summarized by their computational power, storage
and battery life. The approaches taken in the surveyed
MEC solutions have already weakened some of these
limitations, but the following restrictions are still not
solved completely and require further research.

Resource Discovery: The transfer of a mobile applica-
tion or parts of it requires a fast, dynamic and adaptive
resource discovery. As the task of finding and keeping
a connection alive can be an expensive process in terms
of energy usage, this should be done only when it is
required. But when it comes to the point where a surrogate
is needed to perform an offloading request, the resource is
needed right away and scheduling the discovery process
until the offloading request is received already makes
some of the offloading tasks redundant. Hence, to align
these conflicting targets, an adaptive process is required
that dynamically balances the frequency of the surrogate
discovery, considering the probability of suddenly receiv-
ing the offloading request. Furthermore, as some mobile
applications require specific features (e.g., FPGA) to be
available on the surrogates, the discovery process should
be able to include these non-functional criteria in the
discovery process, as discussed in [83]. Ultimately, as
mentioned in Section 2 and also found by [35], the quickly
changing context of mobile scenarios further complicates
this problem as it requires a re-evaluation of the discovery
results.

Partitioning and Task Scheduling: The decision for
an optimal partitioning- and offloading strategy is still
being considered one of the central problem statements in
the domain of mobile edge computing [84]. Additionally,
the offloading decision also requires to incorporate the
mobility pattern as well as the applications’ characteristics
[85]. The requirement for near real-time data consistency
further complicates this problem [5]. Furthermore, the
execution of a mobile application should ideally be
distributed optimally amongst the available surrogates. To
allow this, the application first needs to be partitioned

into locally and remotely executable code [35]. This
partitioning should first of all happen with respect to the
smallest cost, in terms of computation and bandwidth [73,
8]. Second, by maintaining a high level of usability (e.g.,
remaining responsive), even while the mobile application
migrates [54]. Moreover, to achieve an efficient task
scheduling, it requires to decide about every potential
offloading task (depending on the used granularity, this
can be a component, method, thread or even a single
line of code) whether to execute it locally or remotely.
For remote execution, the decision for a sequential or
parallel execution of offloaded tasks (e.g., shared state
and task completion dependencies) is another issue to be
aware of. While this is a computationally intensive task
itself, it needs to be taken care that the expected savings
are not overcompensated (compare [7]). With respect to
the existing solutions, automatic partitioning and a fine-
grained dynamic execution strategy depict an important
step towards this issue. Again, the dynamic environment
of mobile edge clouds brings further obstacles related
to the constantly changing environment, as effects of
intermittent connectivity, or more generally a proper
context adaptation, need to be taken into account in future
work in this domain.

Adaptation: The heterogeneity of mobile edge clouds
characterizes an important factor while developing an
MEC solution. It needs to be taken into account that their
resources, capabilities, and available operating system
layers vary strongly. The required adjustments and
hence the allocation strategy of the mobile edge cloud
solution should take into account these effects and adapt
accordingly, but many of the surveyed solutions do not
consider the existing heterogeneity.

Lack of Standards: The vast amount of existing
solutions might originate from a lack of any standards
or a reference architecture, which are both currently
missing in the domain of mobile edge computing [86]. The
mentioned restrictions prevent companies like network
carriers to invest in such an architecture which leads to
high boundaries in terms of market entry. But as we could
observe with the application stores of Google and Apple,
exactly this, providing the right ecosystem (including
infrastructure from surrogates to payment), is the key
factor to success for MEC. We can conclude that the often
cited vision of cyber foraging [16] is still ahead of time,
especially due to the mentioned restrictions in the areas
of context adaptation, like resource detection, optimal
partitioning and proper adaptation strategies - often stated
to be the main challenges [35, 83].
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8. CONCLUSION

As mobile applications demand for more and more
resources due to increasing user expectations, new ways
to resolve this area of conflict are required. Mobile Cloud
Computing as well as Mobile Edge Computing each
present a wide range of possible solutions. But despite
early standardization efforts [3], there is currently neither
an MEC framework nor a cloudlet infrastructure available
on the market, which we believe is due to the lack of
proper development support and limited context adaptation
features that are required to support the broad spectrum of
different mobile devices and mobility scenarios.

While much other related work exists ([19], [87],
[88]), the purpose of this article was to focus on
computation offloading techniques that fit into the common
development process of mobile applications, first to
support a broad range of mobile services, second to
be easily learnable for developers. Consequently, this
article first introduced the foundations of MEC together
with the typical architecture of an MEC solution.
Next, different application scenarios were described
to illustrate the practical relevance and exemplify the
common characteristics of MEC. Based on these as well
as on ISO criteria for software quality an extensive
list of requirements was presented. Subsequently, 40
representative MEC approaches from different domains
were surveyed and their fulfilment of the respective
requirements has been evaluated.

Afterwards, we presented CloudAware, a mobile
middleware for MCC as well as MEC. CloudAware faces
the challenges by empowering automated context-aware
self-adaptation of mobile applications while maintaining
features like ease of use, elasticity and scalability. Based
on our generic context adaptation process it even allows to
anticipate future context scenarios that are unforeseeable
by the developer during design time. Besides a qualitative
evaluation with respect to the derived requirements we
also conducted a quantitative evaluation. In this course,
using real usage data of the Nokia Mobile Data Challenge
we highlighted the general need for context adaptation in
MEC and MCC scenarios and proved our solution to fulfil
resource demands of a real-world mobile application in a
majority of cases.

Finally, a lineup of open current limitations and
further open research challenges has given prospects for
future work and research opportunities. Based on these
findings our own prospects for future work concentrate on
establishing a design guideline and best practices for MCC
and MEC solutions as well as on conducting a medium-
scale evaluation in the field.
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